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Recall: Local search optimization

Local search algorithms are a class of combinatorial optimization
algorithms.

Starting from a feasible solution, they iteratively try to obtain a better
solution by searching the ”neighborhood” of the current solution.

A critical issue is the manner in which the neighborhood is defined.
Larger neighborhoods generally improve the quality of the solution,
but increase the computation time.



Very large-scale neighborhood search

We now turn our attention to a special class of local search methods,
where

1 the size of the neighborhood is “very large” with respect to the size of
the input data.

2 the neighborhood can be searched in an efficient manner.

A number of such methods have been proposed in the literature [1].

In this lecture, we will consider an approach using minimal graph
cuts. [2].



Move-making algorithms

Local search methods are also often referred to as move-making
algorithms.

The solutions adjacent to a solution S are those that can be obtained
from S in a single move.



Standard moves

A standard move consists of changing the label of a single vertex.
(Algorithm known as iterated conditional modes, ICM)

A local minimum with respect to standard moves thus means that we
cannot decrease the energy by changing the lable of a single vertex.
This is a rather weak optimality condition

In order to get to a global optimum (or even a “good” local
optimum) from a particular starting point, we must be able to reach
the desired optimum by changing the label of one vertex at a time
and each such operation must improve the solution.



A “canonical” labeling problem

We seek a label assignment configuration x that minimizes a given
objective function E , written as follows:

E (x) =
∑
i∈V

φi (xi ) +
∑
i ,j∈E

φij(xi , xj) . (1)

where xi denotes the label of vertex v ∈ V which must belong to a
finite set of integers {0, 1 . . . ,K − 1}
Bad news: NP-hard in the general case.

Good news: For K = 2 labels, a large class of these problems can be
solved by minimal graph cuts.



Solving binary labeling problems with graph cuts

A minimal graph cut divides the graph so the every node is connected
either to the source or the sink – a binary labeling!

For the binary labeling problem, with K = 2, a globally optimal
solution can be computed by solving a max-flow/min-cut problem on
a suitably constructed graph, provided that all pairwise terms are
submodular [2, 3].

A pairwise term φij is said to be submodular if

φij(0, 0) + φij(1, 1) ≤ φij(0, 1) + φij(1, 0) . (2)



Why submodular?

s

t

i j

B+C-A-D

C-D

C-A

Figure 1: Example of graph construction. Submodularity ensures positive edge
weights.



Graph cuts with more than two terminals?

Unfortunately, computing globally minimal graph cuts for more than
two terminals is NP-hard. Therefore, we can not directly apply the
graph cut approach to solve optimization with more than two labels.



Approximate energy minimization with graph cuts

In a paper from 2001 [2], Boykov et al. proposed two types of large
moves based on minimal graph cuts:

α-β-swap moves.
α-expansion moves.

In contrast to standard moves, both these moves allow a large
number of vertices to change their labels simultaneously.

This paper has more than 5000 citations according to google scholar!



α-β-swap moves.

Given a pair of labels α, β, a move from a labeling L1 to a labeling L2
is called an α-β-swap move if the only difference between L1 and L2
is that

some vertices that were labeled α in L1 are labeled β in L2, and
some vertices that were labeled β in L1 are labeled α in L2.



α-β-swap moves.

Figure 2: Example of an α-β-swap move. The labeling on the right is a “dark
gray”-”black”-swap move from the labeling on the left.



α-expansion moves.

Given a label α, a move from a labeling L1 to a labeling L2 is called
an α-expansion move if the only difference between L1 and L2 is that
some vertices that were not labeled α in L1 are labeled α in L2.



α-expansion moves.

Figure 3: Example of an α-β-swap move. The labeling on the right is a
“white”-expansion move from the labeling on the left.



Optimization algorithm

Given a labeling L, there is an exponential number of possible swap
and expansion moves.

Checking these moves naively requires exponential time if perfomed
naively.

Instead Boykov et al. propose efficient methods to find the optimal
α-β-swap or α-expansion move given a current labeling, using
minimal graph cuts.

The two algorithms are similar in structure.



Swap move algorithm

Start with an arbitrary labeling L.
Set done ← false.
while not done do

Set done ← true.
for each pair of labels α and β do

Find, among all labelings within one α-β swap from L, the labeling
L′ with the lowest energy.
if f (L′) < f (L) then

Set L← L′.
Set done ← false.

end

end

end



Expansion move algorithm

Start with an arbitrary labeling L.
Set done ← false.
while not done do

Set done ← true.
for each label α do

Find, among all labelings within one α expansion from L, the
labeling L′ with the lowest energy.
if f (L′) < f (L) then

Set L← L′.
Set done ← false.

end

end

end



Comparison between the algorithms

As shown by Boykov et al. [2] both algorithms can be used to find strong
local minima of a fairly general class of objective functions:

The swap-move algorithm can optimize any objective function that is
a semi-metric.

The expansion move-algorithm can optimize any objective function
that is a metric.

When applicable, the expansion move algorithm is guaranteed to
produce results that are within a known factor of the global minimum.



Example results

Figure 4: Restoration example by Boykov et al. (a) Original image. (b) Original
image corrupted by noise. (c) Local minimum with respect to standard moves.
(d) Local minimum with respect to expansion moves.



Example results

Figure 5: Stereo disparity example by Boykov et al. (a) One image from a stereo
pair. (b) Disparity result, simulated annealing. (c) Disparity result, swap
algorithm. (d) Disparity result, expansion algorithm.



Summary

Via the swap-move and expansion-move algorithms presented here,
minimum graph cuts can be used to solve a fairly wide class of
combinatorial optimization problems typically occuring in image
processing.

The solutions are guaranteed to be locally optimal, in a strong sense.

In contrast to “standard” minimum cuts, these techniques can solve
labeling problems involving more than two labels. The number of
labels must still be finite.
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